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Abstract

How large can a family A ⊂ P[n] be if it does not contain A,B with |A \ B| = 1? Our
aim in this paper is to show that any such family has size at most 2+o(1)

n

(
n

bn/2c
)
. This is tight

up to a multiplicative constant of 2. We also obtain similar results for families A ⊂ P[n] with
|A\B| 6= k, showing that they satisfy |A| ≤ Ck

nk

(
n

bn/2c
)
, where Ck is a constant depending only

on k.

1 Introduction

A family A ⊂ P[n] = P({1, . . . , n}) is said to be a Sperner family or antichain if A 6⊂ B for all
distinct A,B ∈ A. Sperner’s theorem [9], one of the earliest result in extremal combinatorics,
states that every Sperner family A ⊂ P[n] satisfies

|A| ≤
(

n

bn/2c

)
. (1)

[We remark that this paper is self-contained; for background on Sperner’s theorem and related
results see [2].]

Kalai [5] noted that the Sperner condition can be rephrased as follows: A does not contain two
sets A and B such that, in the unique subcube of P[n] spanned by A and B, A is the bottom
point and B is the top point. He asked: what happens if we forbid A and B to be at a different
position in this subcube? In particular, he asked how large A ⊂ P[n] can be if we forbid A and B
to be at a ‘fixed ratio’ p : q in this subcube. That is, we forbid A to be p/(p+q) of the way up this
subcube and B to be q/(p+ q) of the way up this subcube. Equivalently, q|A \B| 6= p|B \A| for
all distinct A,B ∈ A. Note that the Sperner condition corresponds to taking p = 0 and q = 1. In
[8], we gave an asymptotically tight answer for all ratios p : q, showing that one cannot improve
on the ‘obvious’ example, namely the q − p middle layers of P[n].
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Theorem 1.1 ([8]). Let p, q be coprime natural numbers with q ≥ p. Suppose A ⊂ P[n] does not
contain distinct A,B with q|A \B| = p|B \A|. Then

|A| ≤ (q − p+ o(1))
(

n

bn/2c

)
. (2)

Up to the o(1) term, this is best possible. Indeed, the proof of Theorem 1.1 in [8] also gives the
exact maximum size of such A for infinitely many values of n.

Another natural question considered in [8] asks how large a family A ⊂ P[n] can be if, instead of
forbidding a fixed ratio, we forbid a ‘fixed distance’ in these subcubes. For example, how large
can A ⊂ P[n] be if A is not at distance 1 from the bottom of the subcube spanned with B for
all A,B ∈ A? Equivalently, |A \ B| 6= 1 for all A,B ∈ A. Here the following family A∗ provides
a lower bound: let A∗ consist of all sets A of size bn/2c such that

∑
i∈A i ≡ r (mod n) where

r ∈ {0, . . . , n− 1} is chosen to maximise |A∗|. Such a choice of r gives |A∗| ≥ 1
n

(
n
bn/2c

)
. Note that

if we had |A\B| = 1 for some A,B ∈ A∗, since |A| = |B|, we would also have |B\A| = 1 – letting
A\B = {i} and B\A = {j} we then have i− j ≡ 0 (mod n) giving i = j, a contradiction.

In [8], we showed that any such family A ⊂ P[n] satisfies |A| ≤ C
n 2n = O( 1

n1/2

(
n
bn/2c

)
) for

some absolute constant C > 0. We conjectured that the family A∗ constructed in the previous
paragraph is asymptotically maximal (Conjecture 5 of [8]). In Section 2, we prove that this is
true up to a factor of 2.

Theorem 1.2. Suppose that A ⊂ P[n] is a family of sets with |A\B| 6= 1 for all A,B ∈ A. Then
|A| ≤ 2+o(1)

n

(
n
bn/2c

)
.

One could also ask what happens if we forbid a fixed set difference of size k, instead of 1 (where
we think of k as fixed and n as varying). This turns out to be harder. In [8] we noted that the
following family A∗k ⊂ P[n] gives a lower bound of 1

nk

(
n
bn/2c

)
: supposing n is prime, let A∗k consist

of all sets A of size bn/2c which satisfy
∑

i∈A i
d ≡ 0 (mod n) for all 1 ≤ d ≤ k. In Section 3 we

prove that this is also best possible up to a multiplicative constant.

Theorem 1.3. Let k ∈ N. Suppose that A ⊂ P[n] with |A \ B| 6= k for all A,B ∈ P[n]. Then
|A| ≤ Ck

nk

(
n
bn/2c

)
, where Ck is a constant depending only on k.

Our notation is standard. We write [n] for {1, . . . , n}, and [a, b] for the interval {a, . . . , b}. For a
set X, we write P(X) for the power set of X and X(k) for collection of all k-sets in X. We often
suppress integer-part signs.

2 Proof of Theorem 1.2

Our proof of Theorem 1.2 uses Katona’s averaging method (see [6]), but modified in a key way.
Ideally here, as in the proof of Sperner’s theorem or Theorem 1.1, we would find configurations
of sets covering P[n], so that each configuration has at most C/n3/2 proportion of its elements
in A, for any family A satisfying |A \ B| 6= 1 for A,B ∈ A. Then, provided these configurations
cover P[n] uniformly, we could count incidences between elements of A and these configurations
to get an upper bound on |A|.
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However, we do not see how to find such configurations. So instead our approach is as follows.
Rather than insisting that each of the sets in our configuration is well-behaved (in the sense
above), we will only require that most of them have at most C/n3/2 proportion of their elements
in A. It turns out that this can be achieved, and that it is good enough for our purposes.

Proof. To begin with, remove all elements in A of size smaller than n/2 − n2/3 or larger than
n/2 +n2/3. By Chernoff’s inequality (see Appendix A of [1]), we have removed at most o( 1

n

(
n

n/2

)
)

sets. Let B denote the remaining sets in A. It suffices to show that |B| ≤ 2+o(1)
n

(
n

n/2

)
.

We write I = [1, n/2 + n2/3] and J = [n/2 + n2/3 + 1, n] so that [n] = I ∪ J . Let us choose
a permutation σ ∈ Sn uniformly at random. Given this choice of σ, for all i ∈ I, j ∈ J let
Ci,j = {σ(1), . . . σ(i)} ∪ {σ(j)}. Let Cj = {Ci,j : i ∈ I}, and call these sets ‘partial chains’. Also
let C =

⋃
j∈J Cj .

Now, for any choice of σ ∈ Sn, at most one of the partial chains of C can contain an element of
B. Indeed, suppose both Ci1,j1 = Ci1 ∪ {σ(j1)} and Ci2,j2 = Ci2 ∪ {σ(j2)} lie in A for distinct
j1, j2 ∈ J . Since Ci1 and Ci2 are elements of a chain, without loss of generality we may assume
Ci1 ⊂ Ci2 . But then (Ci1 ∪ {σ(j1)}) \ (Ci2 ∪ {σ(j2)}) = {σ(j1)}, which contradicts |A \B| 6= 1 for
all A,B ∈ B.

Note that the above bound alone does not guarantee the upper bound on |A| stated in the theorem,
since a fixed partial chain Ci may contain many elements of A. We now show that this cannot
happen too often.

For i ∈ I and j ∈ J , let Xi,j denote the random variable given by

Xi,j =
{

1 if Ci,j ∈ B and Ck,j /∈ B for k < i;
0 otherwise.

From the previous paragraph, we have ∑
i,j

Xi,j ≤ 1 (3)

where both here and below the sum is taken over all i ∈ I and j ∈ J . Taking expectations on
both sides of (3) this gives ∑

i,j

E(Xi,j) ≤ 1. (4)

Rearranging we have∑
i,j

E(Xi,j) =
∑
i,j

∑
B∈B

P(Ci,j = B and Ck,j /∈ B for k < i). (5)

We now bound P(Ci,j = B and Ck,j /∈ B for k < i) for sets B ∈ B. Note that we can only have
Ci,j = B if |B| = i + 1. Furthermore, for such B, since Ci,j is equally likely to be any subset of
[n] of size i+ 1, we have P(Ci,j = B) = 1/

(
n

i+1

)
. We will show that for all such B

P(Ci,j = B and Ck,j /∈ B for k < i) = (1− o(1))P(Ci,j = B) (6)
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To see this, note that given any set D ⊂ [n], there is at most one element d ∈ D such that
D − d ∈ B. Indeed, |(D − d′) \ (D − d)| = 1 for any distinct choices of d, d′ ∈ D. Recalling that
Ck,j = Ci,j − {σ(k + 1), . . . , σ(i)} for all k < i and that σ(k + 1) is chosen uniformly at random
from the k + 1 elements of Ck+1,j − {σ(j)}, we see that for k + 1 ≥ n/2− n2/3 we have

P(Ck,j /∈ B|Ck+1,j , . . . , Ci,j) ≥ (1− 1
k + 1

) ≥ (1− 1
n/2− n2/3

). (7)

Also, since B contains no sets of size less than n/2− n2/3, for k + 1 < n/2− n2/3 we have

P(Ck,j /∈ B|Ck+1,j , . . . , Ci,j) = 1. (8)

But now by repeatedly applying (7) and (8) we get that for any B of size i+1 ∈ [n/2−n2/3, n/2+
n2/3] we have

P(Ci,j = B and Ck,j /∈ B for k < i) ≥ (1− 1
n/2− n2/3

)(i−n/2−n2/3)P(Ci,j = B)

≥ (1− 1
n/2− n2/3

)2n2/3
P(Ci,j = B)

= (1− o(1))P(Ci,j = B).

Now combining (6) with (4) and (5) we obtain

1 ≥
∑
i,j

E(Xi,j)

=
∑
i,j

∑
B∈B

P(Ci,j = B and Ck,j /∈ B for k < i)

=
∑
i,j

∑
B∈B(i+1)

(1− o(1))P(Ci,j = B)

= (1− o(1))
∑
i,j

|B(i+1)|(
n

i+1

)
= (1− o(1))|J |

∑
i

|B(i+1)|(
n

i+1

) .

Since |J | = n/2− n2/3, this shows that

2 + o(1)
n

≥
∑

i

|B(i+1)|(
n

i+1

)
giving |B| ≤ 2+o(1)

n

(
n

n/2

)
, as required.

3 Proof of Theorem 1.3

The proof of Theorem 1.3 will use of the following result of Frankl and Füredi [4].
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Theorem 3.1 (Frankl-Füredi). Let r, k ∈ N with 0 ≤ k < r. Suppose that A ⊂ [n](r) with
|A ∩B| 6= k for all A,B ∈ A. Then |A| ≤ drn

max (k,r−k−1) where dr is a constant depending only
on r.

We will also make use of the Erdős-Ko-Rado theorem [3].

Theorem 3.2 (Erdős-Ko-Rado). Suppose that k ∈ N and that 2k ≤ n. Then any family A ⊂ [n](k)

with A ∩B 6= ∅ for all A,B ∈ A satisfies |A| ≤
(
n−1
k−1

)
.

We are now ready for the proof of the main result. Given a set U ⊂ [n] and a permutation σ ∈ Sn,
below we write σ(U) = {σ(u) : u ∈ U}.

Proof of Theorem 1.3. We will assume for convenience that n is a multiple of 3k – this assumption
can easily be removed. To begin, remove all elements in A of size smaller than n/2 − n2/3 or
larger than n/2 + n2/3. By Chernoff’s inequality (see Appendix A of [1]), we have removed at
most o( 1

nk

(
n

n/2

)
) sets. Let B denote the remaining sets in A. For each l ∈ [0, k − 1], let

Bl = {B ∈ B : |B| ≡ l (mod k)}.

To prove the theorem it suffices to prove that for all l ∈ [0, k − 1] we have |Bl| ≤ c′

nk

(
n

n/2

)
, where

c′ = c′(k) > 0. We will show this when l = 0 as the other cases are similar.

Let I = [1, n/3] and J = [n/3 + 1, n] so that [n] = I ∪ J . Let us choose a permutation σ ∈ Sn

uniformly at random. Given this choice of σ, for all i ∈ [n/3k] and S ∈ J (n/3) let

Ci,S = σ({1, . . . , ik}) ∪ σ(S).

Let CS = {Ci,S : i ∈ [n/3k]} and call these sets ‘partial chains’. We write

D = {S ∈
(
J

n/3

)
: CS ∩ B0 6= ∅} ⊂

(
J

n/3

)
.

We claim that for any choice of σ ∈ Sn, we have

|D| ≤ d2k(12k2)k

nk

(
|J |
n/3

)
, (9)

where d2k is as in Theorem 3.1. Indeed otherwise, by averaging, there exists T ∈ J (n/3−2k) for
which the family

DT =
{
U ∈ (J \ T )(2k) : U ∪ T ∈ D

}
⊂ (J \ T )(2k)

satisfies |DT | > d2k(12k2)k

nk

(|J\T |
2k

)
. This gives that

|DT | >
d2k(12k2)k

nk

(
|J \ T |

2k

)
≥ d2k(12k2)k

nk

|J \ T |2k

(2k)2k
=
d2k|J \ T |2k

(n/3)k
≥ d2k|J \ T |k,

since |J \ T | = n/3 + 2k ≥ n/3. However, applying Theorem 3.1 to DT with r = 2k we find
U,U ′ ∈ DT with |U ∩ U ′| = k. This then gives Ci,U∪T , Ci′,U ′∪T ∈ B0 for some i, i′ ∈ [n]. Without
loss of generality, we have i ≤ i′. But then, as σ({1, . . . , ik}) ⊂ σ({1, . . . , i′k}), we have

|Ci,U∪T \ Ci′,U ′∪T | = |σ(U) \ σ(U ′)| = |U \ U ′| = |U | − |U ∩ U ′| = 2k − k = k.
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However |A \B| 6= k for all A,B ∈ B0. This contradiction shows that (9) must hold.

Now the bound (9) shows that for any choice of σ ∈ Sn, at most ck/nk proportion of the sets CS
can contain elements of B0. Note however that any of these partial chains may still contain many
elements from B0. As in the proof of Theorem 1.2, we now show that this cannot happen too
often.

For i ∈ [n/3k] and S ∈ J (n/3), let Xi,S denote the random variable given by

Xi,S =
{

1 if Ci,S ∈ B0 and Ci′,S /∈ B0 for all i′ < i;
0 otherwise.

From the previous paragraph, we have

∑
i,S

Xi,S ≤
d2k(12k2)k

nk

(
|J |
n/3

)
(10)

where both here and below the sum is taken over all i ∈ [n/3k] and S ∈ J (n/3). Taking expectations
on both sides of (3) this gives

∑
i,S

E(Xi,S) ≤ d2k(12k2)k

nk

(
|J |
n/3

)
. (11)

Rearranging we have∑
i,S

E(Xi,S) =
∑
i,S

∑
B∈B0

P(Ci,S = B and Ci′,S /∈ B0 for i′ < i). (12)

We now bound P(Ci,S = B and Ci′,S /∈ B0 for i′ < i) for sets B ∈ B0. Note that we can only have
Ci,S = B if |B| = ik + n/3. Furthermore, for such B, since Ci,S is equally likely to be any subset
of [n] of size ik + n/3, we have P(Ci,S = B) = 1/

(
n

ik+n/3

)
. We will prove that for all such B

P(Ci,S = B and Ci′,S /∈ B0 for i′ < i) = (1− o(1))P(Ci,S = B) (13)

To see this, note that given any set D ⊂ [n] and two sets E1, E2 ∈ D(k) for which D \E1, D \E2 ∈
B0, we must have E1 ∩E2 6= 0 – otherwise |(D \E1) \ (D \E2)| = k. Therefore, for |D| ≥ 2k, by
Theorem 3.2, there are at most

(|D|−1
k−1

)
= k
|D|
(|D|

k

)
choices of E ∈ D(k) with D \E ∈ B0. Recalling

that Ci′,S = Ci,S−{σ(i′k+1), . . . , σ(ik)} for all i′ < i and that {σ(i′k+1), . . . , σ((i′+1)k)} is chosen
uniformly at random among all k-sets in {σ(1), . . . , σ((i′+ 1)k)}, we see that for (i′+ 1)k+n/3 ≥
(n/2− n2/3) we have

P(Ci′,S /∈ B0|Ci′+1,S , . . . , Ci,S) ≥ (1− k

(i′ + 1)k
) ≥ (1− k

n/6− n2/3
). (14)

Also, since B0 contains no sets of size less than n/2− n2/3, for (i′ + 1)k + n/3 < (n/2− n2/3) we
have

P(Ci′,S /∈ B0|Ci′+1,S , . . . , Ci,S) = 1. (15)
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But now by repeatedly applying (14) and (15), we get that for any B of size ik + n/3 ∈ [n/2 −
n2/3, n/2 + n2/3] we have

P(Ci,S = B and Ci′,S /∈ B0 for i′ < i) ≥ (1− k

n/6− n2/3
)2n2/3/kP(Ci,S = B)

≥ (1− k

n/6− n2/3
)2n2/3/kP(Ci,S = B)

= (1− o(1))P(Ci,S = B).

Now combining (13) with (11) and (12) we obtain

d2k(12k2)k

nk

(
|J |
n/3

)
≥
∑
i,S

E(Xi,S)

=
∑
i,S

∑
B∈B0

P(Ci,S = B and Ci′,S /∈ B0 for i′ < i)

=
∑
i,S

∑
B∈B(ik+n/3)

0

(1− o(1))P(Ci,S = B)

= (1− o(1))
∑
i,S

|B(ik+n/3)
0 |(

n
ik+n/3

)
= (1− o(1))

(
|J |
n/3

) ∑
j∈[n]

|B(j)
0 |(
n
j

) .
But this shows that

d2k(12k2)k

nk
≥
∑
j∈[n]

|B(j)
0 |(
n
j

)
giving |B0| ≤ d2k(12k2)k

nk

(
n

n/2

)
, as required.

4 Concluding remarks

It would be very interesting to determine the true answer in Theorem 1.2, i.e. to remove the
factor of 2. This is related to the well-known problem of finding the maximum size of a set system
in which no two members are at Hamming distance 2, where there is also a ‘gap’ of multiplicative
constant 2. Indeed, our proof of Theorem 1.2 can be modified to show that the answers to these
two questions are asymptotically equal. See Katona [7] for background on this problem.
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